If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-14x-9=0
a = 10; b = -14; c = -9;
Δ = b2-4ac
Δ = -142-4·10·(-9)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{139}}{2*10}=\frac{14-2\sqrt{139}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{139}}{2*10}=\frac{14+2\sqrt{139}}{20} $
| 75+(2x+5)=180° | | 2m-3=9-m | | 4(y-2)=y+7 | | 10+3j=18 | | b+5=-4b | | 2p+2(p+5)=35 | | (5614.94-x)/x=-0.0091 | | 3(2x-5)=-4+5 | | 1.5=1-(1/x) | | 2(a)+3=0 | | -4.9x^2+13x+100=0 | | a(2)+3=0 | | 4a2=1 | | x+7/10=6 | | 13n^2-n-34=0 | | 3x+13/8-11x-5/4=x/2 | | 1,15x=200 | | 1,5x=200 | | 7*x-8=2 | | 2,5*y+7=12 | | 21×2=x | | X^2-13x+140=0 | | 2x+5=3x+40 | | -2/3x+5=17 | | 63z=49+18z² | | 9y=96-3y | | (42/x)+2x=20 | | 2^x-2^x=112 | | 302y=10 | | (D⁴-2D³-D²+4D+4)y=0 | | 1-2x^2=0.98 | | 2x+1÷5=x-2÷3 |